

European Molecula

Crystal digital PCR™ for genome editing and high multiplexing mutation detection

> Kimberley D. Gutierrez, PhD Sr. Field Application Scientist Stilla Technologies Inc

> > NextGen Omics Series Boston, MA April 7, 2020

Presentation Outline

Crystal Digital PCR workflow for multiplexing DNA assays

 Tag copy number assessment in CRISPR-edited cell lines

 6-color Crystal Digital PCR for cancer monitoring in clinical trials

PRINCIPLE OF DIGITAL PCR

RESULTS 636 cp/µL with 2.2 % uncertainty

POISSON STATISTICS

 $\frac{N_{pos}}{N_{tot}}$

PRINCIPLE OF CRYSTAL DIGITAL PCRTM

PERFORM CRYSTAL DIGITAL PCR™ IN 2H30 WITH MINIMUM HANDS-ON TIME

The Naica[™] System Applications Across Life Sciences & Translational Research

Presentation Outline

Crystal Digital PCR workflow for multiplexing DNA assays

 Tag copy number assessment in CRISPR-edited cell lines

 6-color Crystal Digital PCR for cancer monitoring in clinical trials

AIMS of the project

Generate homozygous knock-in clones from human cell lines using CRISPR

- Minimize the number of clones selected for in-depth analysis
 - Validate digital PCR (dPCR) with reference genomes as a high-predictive tool for genotype assessment
 - Quantitatively assess the number of on-target and off-target events using dPCR

CRISPR-Cas9 machinery

• CRISPR components to perform locus-specific genome breaks

- Jinek *et al.*, Science 2012
- Mali *et al.*, Science 2013 \geq

- Cong *et al.*, Science 2013 CRISPR 101: A desktop resource, Addgene How To Use CRISPR: Your Guide to Successful Genome Engineering, Synthego

Repair mechanisms

• For knock-in generation, we exploit the HDR pathway

CRISPR Workflow

• Screening of CRISPR genome-edited knock-ins

- cdPCR was chosen to screen CRISPR edited genomes by assessing the integrated tag copy-number and comparing it with the expected number
 - > Zotova *et al.*, Sci. Rep. 2019
 - Guo *et al.*, Plant Meth. 2018
 - Gehre *et al.*, preprint https://doi.org/10.1101/635151
 - Bulletin 6872, Biorad

The Validation Principle

• Southern blot (SB) vs. cdPCR: interrogating the whole genome

Southern Blot

Crystal Digital PCR

dPCR validation - assay design

• dPCR assay to assess total SNAP-tag integrations

- Primers of the cdPCR SNAP-assay are within the SNAP tag
- Reference assay on the same chromosome ~10kbp away

dPCR Validation results

• Counting SNAP-tag copy number at TPR locus (triploid in U-2 OS cells)

- Clone 1-C10 resulted in one extra integration
- Clone 3-E07 resulted in ~1 integration speculatively heterozygous
- Clone 2-G04 resulted in expected copy-number but major rearrangements in SB
- cdPCR SNAP copy-number mostly matches genotype predictions out of SB

dPCR Validation results

• Counting mEGFP copies at the Nup93 locus (triploid in HeLa Kyoto cells)

- Clone 214 resulted in ~2 integrations not detectable with GFP-sbp
- mEGFP copy-number mostly matches genotype predictions out of SB

dPCR validation - HDR assay design

• Additional dPCR assay to check locus specificity of mEGFP integration

- Forward primer of the dPCR HDR-assay is moved outside of the left homology arm
- Reference assay was adapted to match the new amplicon size (~1.4 kbp)

dPCR Validation results

• Extending dPCR-based quantification of tag insertions at the target locus

- Clone 214 resulted to be heterozygous as predicted by dPCR
- ► HDR assay adds information about the number of specific integrations

 dPCR robust tool to screen CRISPR clones with high predictivity of generated genotypes

dPCR is a quantitative tool to assess CRISPR strategy efficiency

HDR-based dPCR assays can be optimized by shortening homology arms of the donor DNA

Presentation Outline

Crystal Digital PCR workflow for multiplexing DNA assays

 Tag copy number assessment in CRISPR-edited cell lines

 6-color Crystal Digital PCR for cancer monitoring in clinical trials

Announcing 6-color Crystal Digital PCR™

Introducing 6-color Crystal Digital PCR™

Examples of compatible fluorophores:

Channel	Fluorophores	
1	FAM	
2	YY®	
3	Atto 550	
4	ROX	
5	Cy®5	6-0
6	Atto 700	

6-Color Reader

Chip Compatibility

- Sapphire chips
 (36 samples per day per 8h shift)
- 3 chips per run
- Time-to-result: ≤ 3 hours, for 6 channels

6-color Detection Channels : Proof of concept

6-color Lung Cancer Panel for *EGFR* mutation quantification

6-color Crystal Digital PCR[™] quantifies > 90% of known *EGFR* mutations in a single assay

Cyanine 5

- Quantifies 19 of the most prevalent TKI sensitizing and resistance EGFR mutations
- Maximize the use of your precious sample
- Minimize time to results

6-color Detection of the most prevalent sensitizing and resistance EGFR mutations in NSCLC

33 Tumor samples (21 Frozen, 12 FFPE)

- 24 *EGFR* sensitizing anomalies (73%)
- 13 T790M and 5 C797S resistance mutations (54%)
- 9 WT

49 cfDNA samples

- 35 *EGFR* sensitizing anomalies (71%)
- 14 T790M and 3 C797S resistance mutations (35%)
- 14 WT

6-color Crystal Digital PCR™ Breast and Rectal cancer assays

6-color Monitoring of Breast & Rectal Cancer Mutations in two Clinical Studies

Motivation

- **4 year** EU-funded LIMA project led by Philips
- **Goal:** Combine liquid biopsy monitoring & MRI scans to predict and monitor cancer therapy response

Challenge

• 100 patients per trial

- > Breast: 10 samples per patient 1000 samples
- > Rectal: 4 samples per patient 400 samples
- **Reliable, rapid and cost-effective quantification** of at least 6 targets from a single blood sample

Clinical Trial 6-color Crystal Digital PCR[™] Panels

		RECTAL Cancer Panel patient coverage: 10% - 30%	BREAST Cancer Panel patient coverage: 25% - 35%
Channel	Fluorophores	Target	Target
1	FAM	<i>PIK3CA</i> H1047R	ERBB2 (HER2 amp.)
2	ΥY	<i>PIK3CA</i> H1047 WT	<i>РІКЗСА</i> Н1047 WT
3	Atto 550	<i>рікзса</i> е542к	<i>MRM1</i> (Polysomy 17 Ref.)
4	ROX	<i>рікзса</i> е545к	<i>PIK3CA</i> Mut (H1047R / E542K / E545K)
5	Cy®5	<i>рікзса</i> н1047L	TSN (Amplification Ref.)
6	Atto 700	PhiX (Int. Ctrl.)	PhiX (Int. Ctrl.)

Naica™ 6-color Crystal Digital PCR™: Conclusions

- Multiplex oncology panels display high clinical utility : ٠
 - Lung (>90% of known EGFR mutations in NSCLC)
 Breast (25-35% patient coverage)

 - > Rectal (10-30% patient coverage)
- Maximize information output of your precious samples while minimizing time to results ٠

Acknowledgements

European Molecular Biology Laboratory

- Ellenberg Lab
 - Jan Ellenberg
 - Nathalie Daigle
- Cell Biology and Biophysics Computational Support
 - Beatriz Serrano Solano
- Genomics Core Facility
 Vladimir Benes

Baden-Württemberg Stiftung

National Institutes of Health

 6-color development team at Stilla

LEARNING CENTER: www.gene-pi.com

LAUNCH IN MARCH 2019:

STILLA

THANK YOU FOR YOUR ATTENTION! ANY QUESTIONS?

Kimberley.Gutierrez@stilla.fr

For more information on product and workflow, visit our website at **www.stillatechnologies.com**

